CUDA 9.1 インストール2018/01/29 |
|
NVIDIA 社製グラフィックカードによる GPUコンピューティング (GPGPU(General-Purpose computing on Graphics Processing Units)) プラットフォーム CUDA (Compute Unified Device Architecture)
をインストールします。
CUDA を利用するにあたっては、グラフィックカードが対応製品である必要があります。
詳細は NVIDIA 社のサイトで確認ください。(ここ数年のものであればほぼ対応) ⇒ https://developer.nvidia.com/cuda-gpus |
|
| [1] | |
| [2] |
CUDA のダウンロードサイトから Repository RPM パッケージをダウンロードして CUDA をインストールします。
⇒ https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&target_distro=CentOS&target_version=7&target_type=rpmnetwork |
|
[root@dlp ~]# rpm -Uvh cuda-repo-rhel7-9.1.85-1.x86_64.rpm Preparing... ################################# [100%] Updating / installing... 1:cuda-repo-rhel7-9.1.85-1 ################################# [100%] # 通常時は無効にしておく [root@dlp ~]# sed -i -e "s/enabled=1/enabled=0/g" /etc/yum.repos.d/cuda.repo
# CUDA, EPELからインストール
[root@dlp ~]#
yum --enablerepo=cuda,epel install cuda-9-1 xorg-x11-drv-nvidia dkms gcc make
[root@dlp ~]#
vi /etc/profile.d/cuda91.sh # 新規作成 export PATH=/usr/local/cuda-9.1/bin${PATH:+:${PATH}} export LD_LIBRARY_PATH=/usr/local/cuda-9.1/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} # インストール後は一旦再起動 [root@dlp ~]# reboot
|
| [3] | 任意の一般ユーザーでサンプルプログラムを実行して動作確認します。 |
|
# サンプルプログラムをコピー [cent@dlp ~]$ cuda-install-samples-9.1.sh ./ Copying samples to ./NVIDIA_CUDA-9.1_Samples now... Finished copying samples.
[cent@dlp ~]$
cd ./NVIDIA_CUDA-9.1_Samples/1_Utilities/deviceQueryDrv
# deviceQueryDrv サンプル コンパイル [cent@dlp deviceQueryDrv]$ make
# deviceQueryDrv サンプル 実行 [cent@dlp deviceQueryDrv]$ ./deviceQueryDrv
./deviceQueryDrv Starting...
CUDA Device Query (Driver API) statically linked version
Detected 1 CUDA Capable device(s)
Device 0: "GeForce GTX 1060 6GB"
CUDA Driver Version: 9.1
CUDA Capability Major/Minor version number: 6.1
Total amount of global memory: 6078 MBytes (6373179392 bytes)
(10) Multiprocessors, (128) CUDA Cores/MP: 1280 CUDA Cores
GPU Max Clock rate: 1848 MHz (1.85 GHz)
Memory Clock rate: 4004 Mhz
Memory Bus Width: 192-bit
L2 Cache Size: 1572864 bytes
Max Texture Dimension Sizes 1D=(131072) 2D=(131072, 65536) 3D=(16384, 16384, 16384)
Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Texture alignment: 512 bytes
Maximum memory pitch: 2147483647 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: No
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Concurrent kernel execution: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Disabled
Device supports Unified Addressing (UVA): Yes
Supports Cooperative Kernel Launch: Yes
Supports MultiDevice Co-op Kernel Launch: Yes
Device PCI Domain ID / Bus ID / location ID: 0 / 3 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
Result = PASS
# p2pBandwidthLatencyTest サンプル テスト [cent@dlp deviceQueryDrv]$ cd ~/NVIDIA_CUDA-9.1_Samples/1_Utilities/p2pBandwidthLatencyTest [cent@dlp p2pBandwidthLatencyTest]$ make [cent@dlp p2pBandwidthLatencyTest]$ ./p2pBandwidthLatencyTest [CUDA Bandwidth Test] - Starting... Running on... Device 0: GeForce GTX 1060 6GB Quick Mode Host to Device Bandwidth, 1 Device(s) PINNED Memory Transfers Transfer Size (Bytes) Bandwidth(MB/s) 33554432 6108.4 Device to Host Bandwidth, 1 Device(s) PINNED Memory Transfers Transfer Size (Bytes) Bandwidth(MB/s) 33554432 6531.4 Device to Device Bandwidth, 1 Device(s) PINNED Memory Transfers Transfer Size (Bytes) Bandwidth(MB/s) 33554432 154639.7 Result = PASS NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled. |
| Sponsored Link |
|
|